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INTRODUCTrION

We have shown recently (1,2] that' is possible to derive the chronopotentiomet-
nc and chronoamperometric respozii* of microdisk electrodes by modelling these
experiments with a constant uniform flux over the microdisk and by deriving the
average concentration over the surface. The properties of the discontinuous integrals
of Bessel functions are used in these calculations to account for the mixed boundary
conditions in the plane of the electrode (prescribed flux over the electrode surface.
zero flux over the surrounding insulator surface). It is evident that the use of
disontinuous integrals allows the discussion of a wide range of electrochemical
techniques and in this paper we discuss the derivation of the AC impedance of a
rnicrodisk electrode for a simple redox reaction. j I' ,X - /1

THEORETICAL CONSIDERATIONS

We consider the simple redox reaction
Ox + e- t Rd
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at the zncrodisk electrode subjected to an AC flux

D c/az- -Q smtl say forO<F<a, z-0. t>O (1)

with zero flux over the surrounding insulator surface
:"0") .  ac; 1-, 0 r >a. z-0 t >O(2

It should be noted that. as in the application of small amplitude galvanostatic or
potenuostauc pulses (1,21. the uniform flux boundary condition (1) will apply rather
than any boundary condition based on a uniform concentration over the surface of
the microdisk. We apply conditions (1) and (2) to the solution of the differential
equation govern&n the concentration of one of the redox species:

3c D3ac Dac Da2c

Tr -" - - -  a, -" (3)

We consider the Laplace transform of eqa. (3)
321"  1 31 321 c
a,-'+ I + " q -0 (4)

where

q 2 - s/D (5)
s is the variable of the Laplace Tranformaton and c- is the bulk concentration of

each of the redox species. With the sustitution

z - exp[ - (aa + q2)iz1 (6)

the solution of eqn. (4) is flJ

e- +, I J0(a) d- (7)

where the function g(aq) must be chosen to satisy the Laplace transforms of the
boundary conditions (1) and (2):
3a. -Q 0<r<a, z-0 (
az D(s _ - W)

31
z 0 r>a. z-0 (')

Use of the discontinuous integrals

{ 0 r>a

f Jo(ar)J(aa)da- 1/2a r-a ii

ol/a r<a

shows that the alternating component of the concentration is
qwa 2 2)1/, d

D(S 2 + , ): exp[ -a + q)l/ Jo(ar)J1 (aa)( W + q2)1 2

I



and at z- 0 we have

q#a fo (ar)l(aa) da(D(S D Ls ' ) C(---+q')"1.

As in the analysis of the chronopotentiometric experiment, we can invert the
transform before taking the integral in eqn. (12). Since we are interested only in the
steady state behavior of the alternating component of the concentration, we confine
attention here to the poles s - ± ic of the integrand of the Inversion Theorem
f I x l f exp(st) ds (13)

.r , -2 _, 4 (sz + ,)(., + s(13))",

The residues at these poles are
exp{ t:i Wt)

± 2iw( a' + ./D ) 1/ 4 exp( ± if/2) (14)

where

tan 0 - &/da 2  
(15)

Thus the sum of the residues at these poles is&
-1

,- + /Z)'/' (i exp[i(-t - 0/2)] - i exp[ -i(at - 0/2)1)

, 1 sin(wt - /2) (16)

We apply Cauchy's Theorem to eqn. (13) (i.e. that the value of the inteprand is 2ri
times the sum of the residues at the poles) and use eqn. (16) in eqn. (12) to give

Ca + 0J0(ar)J(na) si(t-/2)da (17)

As in the chronopotentiometric case discussed previously, we evaluate the average
concentration over the surface of the disk

2 o fJ( a )ain(wr - 012)r d, da
A~Da, 0 0 a4+wI )/

" f2Q f( 0 )12 sin(w- -/2) da
/2 -.-./ 2  

JI i a(1 + Dza4/,' )1/
4

With the substitutions
/3 al (I

12 - D/ (2w
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we can write eqns. (18) and (15) as

., -_,[e, L, :11 i ' i]- 0/ 2--- d8
f /3(+/,' (21)

tan 0- 1/02 (22)

We can use eqn. (21) in some appropriate polarization equation such as the
Butler-Volmer relation

Q -- L'/ (EL-L ex(-anF L C-+A c., ) -an,(23)~nF (\ ex C- RT c~ IV X ATJI(3
where we have assumed equal bulk concentrations of the two redox components.
For sufficiently small q and cA., we linearize eqn. (23) in the usual way and expand
eqn. (21) into the in-phae and quadrature components to give the real and
imaginary components of the AC impedance

z' RT + aA1- cos(0/2) dfernFioa 2  n F D'12,al/2arc *[" )' I e(1+ +'4)1/4

R T + 4 R T - A ,2
"nFoal v'FiD/2 w/ 2a DC "

Z 4RT _ f J[( s(/2) doVM'F'D2/VIV/"Yc- 1o L" '8(1 +#'8)1/4

4RT _[a
4- (25)

The functions 04, and 0, are tabulated in Table I and Fig. I gives a Cole-Cole plot
of the dimensionless quantities

irn 2FDacm nFD1/2 (26)FR -7 Z ' 2 -,o= "2 0 4' (' a (4 (26)
2RT :Z "2( D  1 ao2J ' a D

!rn2F 2Dac' D-) 12 (2)

61 as a function of the dimensionless frequency a2w/D. As expected, the plot differs
markedly from the plot for a large planar electrode [3]. At low frequencies. Z"
vanishes as the transport impedance becomes determined by the steady state mass
transfer coefficient to the microelectrode surface. At sufficiently high frequencies
the results resemble the familiar plot of the Warburg impedance and as W - X
Z" - 0 and Z' is determined by the charge transfer resistance. This charge transfer
resistance displaces the Cole-Cole plot along the Z' axis and RcT can be obtained
from both the high frequency and zero frequency limits. In contrast to measurement



V
TABLE i

Values of the function 0,(a~wlD) and 0s(a-4/0D). eqns. (24)-(27)

D -P(a~wD) 0'(a~wlD)
0.000400 0.00841 0.000070
0.001600 0.01669 0.000276
0003600 0.02483 0.000612
0006400 0.03282 0.001075
0.01000 0.04068 0.001658
0.04000 0.077 6 0.006213
0.09000 0.1116 0.01309
0.1600 0.1421 0.02179
0.2500 0.1695 0.03186
0.4900 0.2156 0.05465
0.6400 0.2348 0.066r
0.8100 0.2517 0.07905
1.000 0.2665 0.09131
1.210 0.2794 0.1034
1.690 0.3002 0.1266
1.960 0.3066 0.1376
225 0.3157 0.1480
2.890 0.3269 0.1674
3.240 0.3312 0.1762
3.610 0.3349 O.18M5
4.M4 o.3427 0.20M6
5.760 0.3460 0.2186
6.760 0.3482 0.2292
7.840 0.342 0.2394
9.000 0.350 0.2464

10.24 0.3513 0,2534
11.56 0.3517 0.2595
12.96 0.3520 0.2649
14.44 0.3522 0.2696
16.00 0.3524 0.2739
25.00 0.3529 0.2899
36.00 0.3532 0.3005
64.00 0.3534 0.3138
81.00 0.3534 0.3182

100.0 0.3535 0.3217
144.0 0.3535 0.3270
1%.0 0.3535 0.3308
256.0 0.3535 0.3336
324.0 0.3535 0.3359
400.0 0.3535 0.3376
506.2 0.3535 0.3394
625.0 0.3535 0.3408
756.2 0.3535 0.3420

with conventional electrodes, the fequencies are scaled by the parameter (D/a- ,

in other experiments with microelectrodes, the kinetics of fast electrode reaction,
become measurable by making (D/a) sufficiently large.
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Fig. 1. Cole-Cole pkot of the dimewiml upmpne (24) ad (2U)

The equivalent circuit can be designated by Fig. 2 where M denotes the diffu-
sional impedance of the microelectrode. It is unlikely that the uncompensated
solution resistance, R, will have to be taken into account as the spherical potential
field in the solution minii R (just as the spherical concenctration field
maximizes k,). The time constant R, Cd, will usually be short compared to the
shortest accessible value of w- : the response at high frequencies will in fact be
similar to those of planar electrodes being determined by the product ARot.

Cdl

Ru ,',

Rct
Fig. 2. Eqwvalent ci.cut for the disk microelectrode.



CONCLUSION

The simple approach to the solution of the differential equation governing mass
transfer to rmcrodisk electrodes which was used previously to discuss chronopo-
tentiometric and chronoamperometric measurements (1.21 can evidently be used to
analyze all the usual electrochermcal experiments at an adequate level of approxima-
tion. ApplicaUons to reaction schemes involving coupled chemical reactions, to
cyclic amperometry. and to measurements using ring electrodes will be reported
elsewhere [4]. The analysis presented here opens up the use of microelectrodes in
AC impedance expenments. Such measurements are likely to be particularly useful
since it becomes possible to scale the frequency responses and charge transfer
resistances by the parameters (D/a) 2 and (D/a) respectively. Therefore, as in other
applications of microelectrodes to the measurement of electrochemical kinetics, the
electrode dimension becomes a parameter of the experimental investigation.
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GLOSSARY OF ADDTONAL SYMBOLS USED (as also re. 1)

C, Double layer capacitance. 1AF
i (- l)I/2

km Mass transport coefficient. cm s
1 (D/.)' 2

n Number of electrons
Rcr Uncompensated resistance. 0
R, Charge transfer resistance, G
Z' Real part complex impedance
Z" Imaginary part complex impedance
6 Tan- (/Da 2 )

04 fw,$.lcos(e/2) d$8
f,[X lI, fl8 8(1 + #)/

4" f[ J, sin(8/2) dft
Lth 0 '0(l +'84)1/4

•) - Angular frequency, Hz
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